Length of a curve using numerical methods

From apimba
Revision as of 18:41, 1 April 2021 by Milllo (talk | contribs)
Jump to navigation Jump to search

Simpson's Rule is used to calculate integrals numerically.

From the Length of curve page, the length can be calculated using the integral: sqr(1+f '(x)2)dx

---

Instead of evaluating this integral with a table, a numerical method called Simpson's rule can be used:

the length of the curve after n iterations = Ln = (Δx/3)(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) +2f(x4) + ...+ 2f(xn-2) + 4f(xn-1) + f(x0))

where Δx = (b-a)/n with a and b being the boundaries and n the number of iterations of the calculation.