Length of a curve
Jump to navigation
Jump to search
The length of a curve from point a to point b can be found using an integral of the first derivative of the equation:
equation of curve = f(x)
first derivative = f '(x)
length of curve = ∫sqr(1+f '(x)2)dx (this equation can be derived using the method here)
For the previous example of heating a liquid, the first derivative of the equation was f '(t)=30e−0.3t
so the length of the curve from 0 to 5 minutes would be:
∫sqr(1+(30e−0.3t)2)dt
entering this equation into the integral calculator here gives 77.8 degrees, which is about the same value calculated in the previous example using integration of the rate of change!