Difference between revisions of "Falling Body with Air Resist"

From apimba
Jump to navigation Jump to search
Line 17: Line 17:
 
e<sup>kt/m</sup>dv/dt + e<sup>kt/m</sup>vk/m = ge<sup>kt/m</sup>
 
e<sup>kt/m</sup>dv/dt + e<sup>kt/m</sup>vk/m = ge<sup>kt/m</sup>
  
d/ds(se<sup>kt/m</sup>) = ge<sup>kt/m</sup>
+
d/dt(ve<sup>kt/m</sup>) = ge<sup>kt/m</sup>
  
 
integrate both sides:
 
integrate both sides:
  
se<sup>kt/m</sup> + C<sub>1</sub> = gm/ke<sup>kt/m</sup> + C<sub>2</sub>
+
ve<sup>kt/m</sup> + C<sub>1</sub> = gm/ke<sup>kt/m</sup> + C<sub>2</sub>
 +
 
 +
solve for v:
 +
 
 +
v = mg/k - (C<sub>1</sub> + C<sub>2</sub>)/e<sup>kt/m</sup>
 +
 
 +
v = mg/k - Ce<sup>-kt/m</sup>

Revision as of 06:58, 5 May 2020

Ftotal = Fgrav - Fair

ma = mg - kv where k units are kg/sec

mdv/dt = mg - kv

put into standard order:

mdv/dt + kv = mg

dv/dt + vk/m = g

find u = e∫k/mdt = ekt/m

multiply by u:

ekt/mdv/dt + ekt/mvk/m = gekt/m

d/dt(vekt/m) = gekt/m

integrate both sides:

vekt/m + C1 = gm/kekt/m + C2

solve for v:

v = mg/k - (C1 + C2)/ekt/m

v = mg/k - Ce-kt/m