Difference between revisions of "Base Excision Repair"
Jump to navigation
Jump to search
Line 2: | Line 2: | ||
First, a glycolyase cuts the damaged base off of its sugar. The site is now referred to as an AP site (apurinic/apyrimidinic). This AP site is then recognized and cut by AP lyase or AP endonuclease, creating a single-stranded break. A polymerase then adds a new nucleotide using the opposite strand as a template. The strand is then sealed with DNA ligase. | First, a glycolyase cuts the damaged base off of its sugar. The site is now referred to as an AP site (apurinic/apyrimidinic). This AP site is then recognized and cut by AP lyase or AP endonuclease, creating a single-stranded break. A polymerase then adds a new nucleotide using the opposite strand as a template. The strand is then sealed with DNA ligase. | ||
==Overview Figure== | ==Overview Figure== | ||
− | == | + | ==Details== |
Latest revision as of 20:44, 9 September 2021
Overview
First, a glycolyase cuts the damaged base off of its sugar. The site is now referred to as an AP site (apurinic/apyrimidinic). This AP site is then recognized and cut by AP lyase or AP endonuclease, creating a single-stranded break. A polymerase then adds a new nucleotide using the opposite strand as a template. The strand is then sealed with DNA ligase.