Difference between revisions of "Base Excision Repair"
Jump to navigation
Jump to search
(Created page with "First, a glycolyase cuts the base off of its sugar. The site is now referred to as an AP site (apurinic/apyrimidinic). This AP site is then recognized and cut by AP lyase or A...") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | First, a glycolyase cuts the base off of its sugar. The site is now referred to as an AP site (apurinic/apyrimidinic). This AP site is then recognized and cut by AP lyase or AP endonuclease, creating a single-stranded break. A polymerase then adds a new nucleotide using the opposite strand as a template. | + | ==Overview== |
+ | First, a glycolyase cuts the damaged base off of its sugar. The site is now referred to as an AP site (apurinic/apyrimidinic). This AP site is then recognized and cut by AP lyase or AP endonuclease, creating a single-stranded break. A polymerase then adds a new nucleotide using the opposite strand as a template. The strand is then sealed with DNA ligase. | ||
+ | ==Overview Figure== | ||
+ | ==Details== |
Latest revision as of 20:44, 9 September 2021
Overview
First, a glycolyase cuts the damaged base off of its sugar. The site is now referred to as an AP site (apurinic/apyrimidinic). This AP site is then recognized and cut by AP lyase or AP endonuclease, creating a single-stranded break. A polymerase then adds a new nucleotide using the opposite strand as a template. The strand is then sealed with DNA ligase.