Difference between revisions of "Falling Body with Air Resist"
Jump to navigation
Jump to search
Line 17: | Line 17: | ||
e<sup>kt/m</sup>dv/dt + e<sup>kt/m</sup>vk/m = ge<sup>kt/m</sup> | e<sup>kt/m</sup>dv/dt + e<sup>kt/m</sup>vk/m = ge<sup>kt/m</sup> | ||
− | d/ | + | d/dt(ve<sup>kt/m</sup>) = ge<sup>kt/m</sup> |
integrate both sides: | integrate both sides: | ||
− | + | ve<sup>kt/m</sup> + C<sub>1</sub> = gm/ke<sup>kt/m</sup> + C<sub>2</sub> | |
+ | |||
+ | solve for v: | ||
+ | |||
+ | v = mg/k - (C<sub>1</sub> + C<sub>2</sub>)/e<sup>kt/m</sup> | ||
+ | |||
+ | v = mg/k - Ce<sup>-kt/m</sup> |
Revision as of 06:58, 5 May 2020
Ftotal = Fgrav - Fair
ma = mg - kv where k units are kg/sec
mdv/dt = mg - kv
put into standard order:
mdv/dt + kv = mg
dv/dt + vk/m = g
find u = e∫k/mdt = ekt/m
multiply by u:
ekt/mdv/dt + ekt/mvk/m = gekt/m
d/dt(vekt/m) = gekt/m
integrate both sides:
vekt/m + C1 = gm/kekt/m + C2
solve for v:
v = mg/k - (C1 + C2)/ekt/m
v = mg/k - Ce-kt/m